National Academies Press: OpenBook

Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology (1995)

Chapter: RELATIONSHIP BETWEEN LINKING, SURFACE LINKING, AND WINDING

« Previous: THE WINDING NUMBER AND HELICAL REPEAT
Suggested Citation:"RELATIONSHIP BETWEEN LINKING, SURFACE LINKING, AND WINDING." National Research Council. 1995. Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology. Washington, DC: The National Academies Press. doi: 10.17226/2121.
×
Page 173

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

WINDING THE DOUBLE HELIX: USING GEOMETRY, TOPOLOGY, AND MECHANICS OF DNA 173 RELATIONSHIP BETWEEN LINKING, SURFACE LINKING, AND WINDING It is remarkable that the three quantities Lk, SLk, and Φ, although very different in definition, are related by a theorem from differential topology. In fact, for a closed DNA on a surface, the linking number is the sum of the surface linking number and the winding number (White et al., 1988); that is, Lk = SLk + Φ. Before we outline the proof of this result, we first give some simple examples. We then give the proof and conclude with the example of the minichromosome. For DNA that lies in a plane or on a spheroid, SLk =0. Therefore, Lk = Φ, and if there are N base pairs in the DNA, the helical repeat is given by h = N / Lk. These two cases include relaxed circular DNA, for which Lk Lk0, and plectonemically interwound DNA, the most common form of supercoiled DNA. For DNA that traverses the handle of a round circular torus while wrapping n times around the handle, Lk = n + Φ if the wrapping is right- handed, and Lk = −n + Φ if the wrapping is left-handed. In both cases, Lk is unchanged if the torus is smoothly deformed. We now outline the proof of the main result. To do this, we first define the surface twist, STw, of the vector field v along the axis curve A (White and Bauer, 1988; White et al., 1988). This is basically defined the same as the twist of the DNA except that the vector field v is used and not the vector field vac, Hence, STw is given by the equation Thus, STw measures the perpendicular component of the change of the vector v as one proceeds along the axis A, and thus is a measure of the spinning of the vector field v around the curve A. It can also be considered to be the twist of Aε around A. We recall that Tw measures

Next: APPLICATION TO THE STUDY OF THE MINICHROMOSOME »
Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology Get This Book
×
 Calculating the Secrets of Life: Contributions of the Mathematical Sciences to Molecular Biology
Buy Paperback | $80.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

As researchers have pursued biology's secrets to the molecular level, mathematical and computer sciences have played an increasingly important role—in genome mapping, population genetics, and even the controversial search for "Eve," hypothetical mother of the human race.

In this first-ever survey of the partnership between the two fields, leading experts look at how mathematical research and methods have made possible important discoveries in biology.

The volume explores how differential geometry, topology, and differential mechanics have allowed researchers to "wind" and "unwind" DNA's double helix to understand the phenomenon of supercoiling. It explains how mathematical tools are revealing the workings of enzymes and proteins. And it describes how mathematicians are detecting echoes from the origin of life by applying stochastic and statistical theory to the study of DNA sequences.

This informative and motivational book will be of interest to researchers, research administrators, and educators and students in mathematics, computer sciences, and biology.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!