National Academies Press: OpenBook
« Previous: Nonlinear Plasma Processes
Suggested Citation:"Boundary Layers." National Research Council. 1995. Plasma Science: From Fundamental Research to Technological Applications. Washington, DC: The National Academies Press. doi: 10.17226/4936.
×
Page 164

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

THEORETICAL AND COMPUTATIONAL PLASMA PHYSICS 164 quantitative understanding. But nonlinear theory is of great intrinsic interest and is essential for the description of most important applications of plasma physics that involve magnetohydrodynamics, kinetic theory, turbulence, the interaction of charged particles with intense electromagnetic fields, and so on. Therefore, increased attention should be given to nonlinear theory aimed at the development of new analytical and numerical tools. Numerical Simulation A most promising area for the future is that of numerical simulation, driven by continuing dramatic advances in computational speed and computer organization, and decreases in the cost of hardware. These ongoing improvements in hardware, coupled with the parallel design of new and more efficient algorithms, should allow the solution of many of the nonlinear problems that currently defy direct analytical solution. Numerical computation offers the best hope of dealing meaningfully with the large problems in complex geometries that characterize so many of the significant applications of plasma physics. One anticipates the development of teams of computational specialists, theorists, experimentalists, and engineers, organized to optimize the solution of particular large technical problems. Training of students for this type of operation should be encouraged in universities. Novel Analytical Techniques The challenge of nonlinear theory suggests the adaptation or innovation of novel analytical techniques. The use of percolation theory for certain transport problems in plasmas appears to be promising. The development of modern statistical analyses, perhaps employing artificial intelligence (symbolic dynamics), may lead to greatly improved data analysis and new physical insights. The transfer from pure mathematics of well-developed areas such as wavelet theory, which are relatively unknown in physics and engineering, offers great promise. Boundary Layers Boundary layers are of great importance in plasmas. These occur in such diverse applications as the sheath region near the first wall of a fusion reactor, the region in a coronal hole where the solar wind is emitted as the system changes from collision-dominated to collision-free, and magnetic reconnection in plasmas of interest in space. They are often distinguished by the need for a full kinetic theory, and they will require a synthesis of analytical boundary layer techniques and advanced numerical methods.

Next: Alpha-Particle Effects in Magnetically Confined Plasmas »
Plasma Science: From Fundamental Research to Technological Applications Get This Book
×
 Plasma Science: From Fundamental Research to Technological Applications
Buy Paperback | $65.00 Buy Ebook | $54.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Plasma science is the study of ionized states of matter. This book discusses the field's potential contributions to society and recommends actions that would optimize those contributions. It includes an assessment of the field's scientific and technological status as well as a discussion of broad themes such as fundamental plasma experiments, theoretical and computational plasma research, and plasma science education.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!