National Academies Press: OpenBook
« Previous: MEMBRANES
Suggested Citation:"REFERENCES." National Research Council. 1989. Research Opportunities for Materials with Ultrafine Microstructures. Washington, DC: The National Academies Press. doi: 10.17226/1488.
×
Page 56
Suggested Citation:"REFERENCES." National Research Council. 1989. Research Opportunities for Materials with Ultrafine Microstructures. Washington, DC: The National Academies Press. doi: 10.17226/1488.
×
Page 57
Suggested Citation:"REFERENCES." National Research Council. 1989. Research Opportunities for Materials with Ultrafine Microstructures. Washington, DC: The National Academies Press. doi: 10.17226/1488.
×
Page 58

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

SYNTHESIS AND PROCESSING: MORPHOLOGICALLY SPECIFIC METHODS. 56 good selectivity for electrolytes, which makes them promising candidates for reverse osmosis and electrodialysis applications. REFERENCES Andres, R. P., R. S. Averback, W. L. Brown, L. E. Brus, W. A. Goddard III, A. Kaldor, S. G. Louie, M. Moskovits, P. S. Peercy, S. J. Riley, R. W. Siegel, F. Spaepen, and Y. Wang. 1989. Research opportunities on clusters and cluster-assembled materials: A Department of Energy-Council on Materials Science Panel Report. J. Mater. Res. 4:704. Baker, R. T. K., and P. S. Harris. 1978. The formation of filamentous carbon. Chem. Phys. Carbon 14:83–165. Baker, R. T. K., J. R. Alonzo, J. A. Dumesio, and D. J. C. Yates. 1982. J. Catalysis 77:74–84. Bowen, H. K. 1986. Advanced ceramics. Scientific American 255(4):169–176. Cohen, Y., and E. L. Thomas. 1985. Structure formation during spinning of poly (p-phenylenebenzobisthiazole) fiber. Polym. Eng. Sci. 25 (17):1093–1096. DeMuese, M. T., E. C. Chenevy, Z. H. Ophir, J. J. Rafalko, and M. I. Haider. 1988. Structure-property relationships of a high-temperature polybenzimidazole-polyetherimide blend. Presented at the American Chemical Society Annual Meeting, Polymer Materials Science and Engineering Division, Los Angeles, California. D'Aniello, M. J., Jr. 1981. J. Catal. 69:9. Endo, M., and I. Koyama. 1976. Japan Patent No. 57/17622. Fujimoto, T., K. Ohkoshi, Y. Miyacki, and M. Nagasawa. 1984. Artificial membranes from multiblock copolymers: I. Fabrication of a charge-mosaic membrane and preliminary tests of dialysis and piezodialysis. J. Memb. Sci. 20(3):313–324. Goldman, L. M., B. Blanpain, and F. Spaepen. 1986. J. Appl. Phys. 60:1374. Guerra, G., S. Choe, D. J. Williams, F. E. Karasz, and W. J. MacKnight. 1988. Fourier transform infrared spectroscopy of some miscible polybenzimidazole/polyimide blends. Macromolecules 21:231.

SYNTHESIS AND PROCESSING: MORPHOLOGICALLY SPECIFIC METHODS. 57 Helminiak, T. E., C. L. Benner, F. E. Arnold, and G. E. Husman. 1978. U.S. Patent Appl. No. 902525. Hirai, T. 1982. CVD of Si3N4 and Its Composites. The Nineteenth University Conf. on Ceramic Science. R. F. Davies, H. Palmones, and R. L. Porter, eds Husman, G. E., T. Helminiak, W. Adams, D. Wiff, and C. L. Benner. 1980. ACS Symposium Series 132, p. 203. Washington, D.C.: American Chemical Society. Kaldor, A., D. M. Cox, D. J. Trevor, and M. R. Zakin. 1986. Z. Phys. D--Atoms Molecules and Clusters 3:195. Karasz, F. E. 1986. Glass transitions and compatibility: Phase behavior in copolymer-containing blends. Pp. 225–236 in Polymer Blends and Mixtures, D. J. Walsh, J. S. Higgins, and A. Maconnachie, eds. Dordrecht (Netherlands): Martinus Nijhoff Publishers. Kesting, R. E. 1985. Synthetic Polymeric Membranes. New York: Wiley Interscience. Klier, K., P. J. Hutta, and R. Kellerman. 1977. ACS Symposium Series 40, p. 108. Washington, D.C.: American Chemical Society. Komiyama, M. 1985. Design and preparation of impregnated catalysts. Catal. Rev.--Sci. Eng. 27(2):341–372. Krause, S. J., T. Haddock, G. E. Price, P. G. Lehnert, J. F. O'Brien, T. E. Helminiak, and W. W. Adams, 1986. Morphology of a phase- separated and a molecular composite PBT/ABPBI polymer blend. J. Polym. Sci. Part B 24:1991–2016. Lackey, W. J., A. W. Smith, D. M. Dillard, and D. J. Twait. 1987. P. 1008 in Proc. 10th Int. Conf. on CVD. Pennington, New Jersey: The Electrochemical Society. Lloyd, D. R., ed. 1984. Materials Science of Synthetic Membranes. ACS Symposium Series No. 269. Washington, D.C.: American Chemical Society. Newnham, R. E., D. P. Skinner, and L. E. Cross. 1978. Mat. Res. Bull. 13:525. Nickl, J. J., K. K. Schweitzer, and P. Luxemberg. 1972. Chemical Vapor Deposition of the Systems Ti-Si-C and Ti-Ge-C. Proc. Third Internat. Conf. on CVD. F. A. Glaski, ed. Hinsdale, Ill: American Nuclear Society.

SYNTHESIS AND PROCESSING: MORPHOLOGICALLY SPECIFIC METHODS. 58 Pinnavaia, T. J. 1983. Science 220:365. Roy, R. 1985. Exploitation of Sol-Gel Route in Processing of Ceramics and Composites. Final Report, Air Force Grant AFOSR 83–0212. Roy, R. 1987. Ceramics by the solution-sol-gel route. Science 238(4834):1664–1669. Stinton, D. P., and W. J. Lackey. 1985. Simultaneous chemical vapor deposition of Si-C-dispersed phase composites. Ceramic Eng. Sci. Proc. p. 707. Takayanagi, M. 1983. Polymer composites of rigid and flexible molecules. Pure Appl. Chem. 55(5):819–832. Thomas, E. L., D. M. Anderson, C. S. Henkee, and D. Hoffman. 1988. Nature 334:598. Tibbetts, G. C., and M. G. Devour. 1986. U.S. Patent No. 4,565,684. Trevor, D. J., R. L. Whetten, D. M. Cox, and A. Kaldor. 1985. J. Am. Chem. Soc. 107:518. Tsai, T. T., F. E. Arnold, and W. F. Hwang. 1985. High-strength, high-modulus ABA block copolymers. Am. Chem. Soc. Polymer Preprints 26(1):144–145. Tzou, M. S., H. J. Jiang, and W. M. H. Sachtler. 1986. Appl. Catal. 20:231.

Next: 4 Characterization Methods. »
Research Opportunities for Materials with Ultrafine Microstructures Get This Book
×
 Research Opportunities for Materials with Ultrafine Microstructures
Buy Paperback | $45.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Materials with nanoscale structure (i.e. a structure of less than 100 nanometers in size) represent a new and exciting field of research. These materials can be produced in many ways, possess a number of unique properties compared with coarser-scaled structures, and have several possible applications with significant technological importance. Based on a state-of-the-art survey of research findings and commercial prospects, this new book concludes that much work remains to be done in characterizing these structures and their exceptional properties, and presents recommendations for the specific research and development activities needed to fill these gaps in our understanding.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!