# Improving Information for Social Policy Decisions -- The Uses of Microsimulation Modeling: Volume II, Technical Papers(1991)

## Chapter: Rough Sensitivity Analysis

« Previous: Multiple Matching and File Concatenation
Page 80
Suggested Citation:"Rough Sensitivity Analysis." National Research Council. 1991. Improving Information for Social Policy Decisions -- The Uses of Microsimulation Modeling: Volume II, Technical Papers. Washington, DC: The National Academies Press. doi: 10.17226/1853.
×

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

STATISTICAL MATCHING AND MICROSIMULATION MODELS 80 parameters, the weight that a triplet is assigned must equal the reciprocal of the probability of that triplet occurring. The triplet will appear with probability wAiâ1 from file A and with probability w Bj 1 from file B. Thus, the weight that this record should get is the inverse of its probability of occurring, which is 1/(wAiâ1+wBjâ1). Using these weights assures that every estimate of the form will be an unbiased estimate. The weights w ABj do not necessarily add to n. This may seem a desirable property of the weights, and in that case we define The most important feature of Rubin's approach is multiple imputation. Multiple imputation is used to assess the variability of the inference or estimation with respect to the imputation process. The variability can be thought of as having two sources, variability due to choice of imputation model, and variability due to imputation given the imputation model. Variability due to imputation is addressed by determining the k data points with the k nearest-to-the-fitted values as potential imputations, rather than simply the closest. Then, to create a number of imputed files, one randomly chooses one of the k to match to each record. The variability due to imputation is then measured by alternately using each concatenated file for analysis. Variability with respect to the imputation model used, here discussed as some sort of regression model, can also be weakly assessed through a type of sensitivity analysis. An essential example of this is the assumption that the partial correlation between Y and Z given X is equal to 0. One could begin by performing several imputations with the assumption that ÏYZ.X equals 0. In addition, one could assume that ÏYZ.X is equal to, say, .5. Then, rather than regress Y on X and Z on X to determine the nearest-to-the-fitted values, one could regress Y on X and Z, and Z on X and Y, since now the entire covariance matrix of Y, X, Z is specified. Then several imputations could again be performed with this new assumption. The variance due to model selection could then be assessed by comparing the results to those obtained when the assumption that ÏYZ.X equals 0 is made. Rough Sensitivity Analysis There is a very close relative to Rubin's procedure that has the advantage of some computational simplicity. This procedure could be used to shed some light on the sensitivity of the analysis to the failure of the conditional independence assumption. The discussion focuses on the case of unconstrained statistical

Next: CONCLUDING NOTE »
Improving Information for Social Policy Decisions -- The Uses of Microsimulation Modeling: Volume II, Technical Papers Get This Book
×

This volume, second in the series, provides essential background material for policy analysts, researchers, statisticians, and others interested in the application of microsimulation techniques to develop estimates of the costs and population impacts of proposed changes in government policies ranging from welfare to retirement income to health care to taxes.

The material spans data inputs to models, design and computer implementation of models, validation of model outputs, and model documentation.

1. ×

## Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

No Thanks Take a Tour »
2. ×

« Back Next »
3. ×

...or use these buttons to go back to the previous chapter or skip to the next one.

« Back Next »
4. ×

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

« Back Next »
5. ×

To search the entire text of this book, type in your search term here and press Enter.

« Back Next »
6. ×

Share a link to this book page on your preferred social network or via email.

« Back Next »
7. ×

View our suggested citation for this chapter.

« Back Next »
8. ×